Maintenance Required: Updating and Extending Bootstrapped Human Activity Recognition Systems for Smart Homes

Shruthi Hiremath

Thomas Ploetz

ABC Conference 2024

School of Interactive Computing, Georgia Tech

Research in Smart Homes

 Smart Home Devices and Applications - to provide seamless interaction

 Technological advancements - reduced cost of sensors, advance in loT technologies

https://www.samma3a.com/t ech/en/best-buy/best-smarthome-devices-2021/

https://corp.smartbrief.com/original/2019/ 01/5-trends-smart-home-technology

Research in Smart Homes

 Smart Home Devices and Applications - to provide seamless interaction

 Technological advancements - reduced cost of sensors, advance in loT technologies

https://www.samma3a.com/t ech/en/best-buy/best-smarthome-devices-2021/

https://corp.smartbrief.com/original/2019/ 01/5-trends-smart-home-technology

Research in Smart Homes

 Smart Home Devices and Applications - to provide seamless interaction

 Technological advancements - reduced cost of sensors, advance in loT technologies

Ambient Assisted Living

https://www.samma3a.com/t ech/en/best-buy/best-smarthome-devices-2021/

Use-Case

• "Life is ever-changing"

• Active Learning - minimal supervision from resident

Use-Case

• "Life is ever-changing"

• Active Learning - minimal supervision from resident

Maintaining Human Activity Recognition Systems(HAR) for Smart Homes

Systematic Approach-

- Develop an procedure to maintain and update activity recognition systems, for smart homes
- Evaluate on real smart home data

Application-

Learn continually

Adaptive ML

Deploy continually

• "Life is ever changing" - Continuous activity logging

Maintaining Human Activity Recognition Systems(HAR) for Smart Homes

Systematic Approach-

- Develop an procedure to maintain and update activity recognition systems, for smart homes
- Evaluate on real smart home data

Application ·

• "Life is ever changing" - Continuous activity logging

Adaptive ML

Deploy continually

Maintaining Human Activity Recognition Systems(HAR) for Smart Homes

Systematic Approach-

- Develop an procedure to maintain and update activity recognition systems, for smart homes
- Evaluate on real smart home data

Application-

• "Life is ever changing" - Continuous activity logging

Deploy continually

CASAS-Aruba

- Mxxx Motion Sensor (ON/OFF)
- Dxxx Door Sensor (OPEN/CLOSE)
- Txxx Temperature sensor

CASAS-Milan

- Mxxx Motion Sensor (ON/OFF)
- Dxxx Door Sensor (OPEN/CLOSE)
- Txxx Temperature sensor

 Mxxx - Motion Sensor (ON/OFF)

• Txxx - Temperature sensor

Maintenance and Update of HAR Systems in Homes

• Step 1 - Initial HAR System—identifies activity segments

• Step 2 - Update and Extension Procedure \rightarrow improves segmentation accuracy

• Continuous Evaluation Procedure

Maintenance and Update of HAR Systems in Homes

• Step 1 - Initial Bootstrapped System→identifies activity segments

• Step 2 - Update and Extension Procedure \rightarrow improves segmentation accuracy

• Continuous Evaluation Procedure

Maintenance and Update of HAR Systems in Homes

• Step 1 - Initial Bootstrapped System→identifies activity segments

 Step 2 - Update and Extension Procedure → improves segmentation accuracy

• Continuous Evaluation Procedure

UPDATING ACTIVITY MODELS FOR HAR - Step 1

Hiremath, Shruthi K., Yasutaka Nishimura, Sonia Chernova, and Thomas Plötz. "Bootstrapping human activity recognition systems for smart homes from scratch." Proceedings of the ACM on Interactive. Mobile. Wearable and Ubiquitous Technologies 6. no. 3 (2022); 1-27.

HAR

Initial HAR System

Initial HAR System

Initial HAR System

Results of Initial HAR System

• Identified frequently occurring activities - Sleeping, Meal preparation, Work etc.

• Sub-optimal lengths of segments of activities identified

Results of Initial HAR System

• Identified frequently occurring activities - Sleeping, Meal preparation, Work etc.

Sub-optimal lengths of segments of activities identified
 GT: A1
 GT: A2
 GT: A3
 PT: A1
 PT: A2
 PT: A3
 GT: Ground Truth; PT: Predictions from initial HAR
 A1: Activity 1; A2: Activity 2; A3: Activity 3

UPDATING ACTIVITY MODELS FOR HAR - Step 2

2. Selfsupervision module

UPDATING ACTIVITY MODELS FOR HAR - Step 2

3. Improved segmentation accuracy

Self-Supervision Module

- SIMCLR training
 - BERT-based features
 - Augmentations -Noise and scale
 - NT-Xent loss

 Predictions from Initial HAR used for fine-tuning

Self-Supervision Module

- SIMCLR training
 - BERT-based features
 - Augmentations -Noise and scale
 - NT-Xent loss

 Predictions from Initial HAR used for fine-tuning

Continuous Evaluation Procedure

Updates (2 weeks) Model 1 using predictions Week 1-2 Week 3-4 Iteration 1 from Train 1 Test 1 Self-supervision module Model 2 Week 1-4 Week 5-6 Iteration 2 Train 2 Test 2 Updates (2 weeks) **Week 1-6** Week 7-8 Model 3 Iteration 3 using predictions from updated motif Train 3 Test 3 models

Results: CASAS-Aruba

Seg. Accuracy =
$$\frac{\sum_{n=1}^{N} (AU_{identified} \in AU_{activity})}{\sum_{n=1}^{N} AU_{activity}}$$

Activity	Week 4-6 (Test 1)	Week 6-8 (Test 2)	Week 8-10 (Test 3)
Meal Prep	GT: 9.37±8.09	M1: 5.61±10.01	M2: 4.66±7.11
	M1: 5.11±6.65	M2: 7.37±11.99	M3:6.89±6.07
Relax	GT: 3.86±3.56	M1: 2.92±3.66	M2: 3.96±6.08
	M1: 2.86±3.55	M2: 3.12±3.64	M3: 4.45±7.03
Sleep	GT: 6.94±6.92	M1: 2.59±2.87	M2: 5.58±5.31
	M1: 5.10±3.75	M2: 2.90±2.95	M3: 5.58±5.31

Conclusion

Initial HAR - identifies frequently occurring activities

Update HAR -

self-supervision module; update motif models

Continuous Evaluation every 2 weeks

Discussion: Refinement of Seed Points

• Reliance on *performance* of Initial HAR

Use *Context* information

 Location pertaining
 Time of occurrence, duration
 Sequence of activities (routines)

Discussion: Refinement of Seed Points

• Reliance on *performance* of Initial HAR

- Use *Context* information
 - Location pertaining
 - Time of occurrence, duration
 - Sequence of activities (routines)

Future Work: Continual Learning

Continual Learning -

- Life is ever changing
- Adapt to changing data pattern in the smart home

Utilizing Human in the Loop-

- General proof of procedure
- Incorporate direct access to actual residents (Resident- in-the loop)

Adaptive ML

Deploy continually

https://ai.kuleuven.be/stories/post/2021-05-10-co ntinual-learning/

Future Work: Human in the Loop

Continual Learning -

- Life is ever changing
- Adapt to changing data pattern in the smart home

Utilizing Human in the Loop-

- General proof of procedure
- Incorporate direct access to actual residents (Resident- in-the loop)

Adaptive ML

Deploy continually

https://ai.kuleuven.be/stories/post/2021-05-10-co ntinual-learning/

Contact Information

Email: <u>shiremath9@gatech.</u> <u>edu</u>

Thank You!